一、考试性质
统计学是应用统计硕士专业学位研究生入学考试初试科目。
二、考查目标
统计学是阐述现代统计基础理论和基本方法的一门学科。实际应用十分广泛。内容包括统计调查、数据整理与展示、概率论基础、参数估计、假设检验、方差分析、回归分析、非参数方法、时间序列、统计指数等方面的内容。
本科目的考试旨在考查考生对统计学的基本原理和基本方法及各种调查研究、数据整理、展示,并结合数据资料进行定性分析和定量分析的掌握与理解能力。统计学考试主要从如下三方面测评考生在统计学方面的基本素质:
1、基本概念和基本理论的理解、掌握;
2、基本解题能力和数据分析与展示能力;
3、综合运用统计理论知识分析问题、解决问题的能力。
三、考试形式
本考试为闭卷考试,满分为150分,考试时间为180分钟。
试卷结构:
(1)试卷分值构成:
基础知识和基本概念理解部分约占分值25%;
运用所学知识经过基本分析解决问题部分约占分值35%;
综合运用基本理论和方法分析问题与解决问题部分约占分值40%。
(2)题型包括:选择题,填空题,简答题,计算分析题等。
四、考试内容
(一)统计中的几个基本概念
1、统计数据的类型:分类数据,顺序数据,数值型数据。
2、总体和样本:总体,样本,参数和统计量,变量及类型。
(二)数据的搜集
1、数据来源:数据的间接来源,数据的直接来源。
2、调查数据:概率抽样,非概率抽样,搜集数据的基本方法。
3、实验数据。
4、数据的误差:抽样误差,非抽样误差,误差的控制。
(三)数据的图表展示
1、数据的预处理:审核,筛选,排序,数据透视表。
2、品质数据的整理与图示:分类数据和顺序数据的整理与图示。
3、数值型数据的整理与展示:数据分组,数值型数据的图示(直方图,茎叶图,箱线图,线图,散点图,雷达图)。
(四)数据的概括性度量
1、集中趋势的度量:分类数据(众数),顺序数据(中位数和分位数),数值数据(各种平均数,众数,中位数)。
2、离散程度的度量:分类数据(异众比率),顺序数据(四分位差),数值数据(极差,平均差,方差,标准差,离散系数,变异系数)。
3、偏态与峰态的度量:偏态及其计算公式,峰态及其计算公式。
(五)概率与概率分布
1、随机事件及其概率。
2、概率的性质与运算法则:基本性质,条件概率,全概率公式和贝叶斯公式。
3、离散型随机变量及其分布:二项分布,泊松分布,期望,方差。
4、连续型随机变量的概率分布:密度和分布函数,正态分布,指数分布,均匀分布,期望,方差。
(六)统计量及其抽样分布
1、统计量:统计量的概念,常用统计量,次序统计量,充分统计量。
2、关于分布的几个概念:抽样分布,渐进分布。
3、由正态分布导出的几个重要分布:卡方分布,t分布,F分布。
4、样本均值的分布与中心极限定理。
5、样本比例的抽样分布。
6、两个样本平均值之差的分布。
7、关于样本方差的分布。
(七)参数估计
1、参数估计的基本原理。
2、一个总体参数的区间估计。
3、两个总体参数的区间估计。
4、样本量的确定。
(八)假设检验
1、假设检验的基本问题。
2、一个总体参数的检验。
3、两个总体参数的检验。
(九)分类数据分析
1、分类数据与卡方统计量。
2、拟合优度检验。
3、列联分析:独立性检验。
4、列联表中的相关测量。
(十)方差分析
1、方差分析的基本概念:基本思想,基本假定,问题的一般提法。
2、单因素方差分析。
3、双因素方差分析。
(十一)一元线性回归
1、变量间关系的度量。
2、一元线性回归:回归模型,参数的最小二乘估计,回归直线的拟合优度,显著性检验,回归分析结果的评价。
3、利用回归方程进行预测:点估计,区间估计。
4、残差分析。
(十二)多元线性回归
1、多元线性回归模型。
2、回归方程的拟合优度。
3、显著性检验。
4、多重共线性。
5、利用回归方程进行预测。
6、变量选择和逐步回归。
(十三)时间序列分析和预测
1、时间序列及其分解。
2、时间序列的描述性分析。
3、时间序列预测的程度。
4、平稳序列的预测。
5、趋势型序列的预测。
6、季节型序列的预测。
7、复合型序列的分解预测。
(十四)指数
1、指数的概念和分类。
2、总指数编制方法:简单指数,加权指数。
3、指数体系。
4、指数综合评价。
五、是否需使用计算器
否。
注:本文文字转载自中国海洋大学研究生院,如有侵权,请联系删除。